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RATIONALE

▪ Computational analysis of standard clinical 

EEG data is limited by abundant muscle, 

movement, and electrode artifacts, especially 

in the awake state. The mitigation of such 

artifacts is labor intensive and introduces 

methodologic risk, such as selection bias that 

may occur when a human 

electroencephalographer manually selects 

“artifact-free” samples for analysis.

▪ With goal of creating a stable preprocessing 

pipeline which can facilitate fully-automated 

processing of clinically-acquired EEG, we set 

out to design and validate a preprocessing 

algorithm using EEG data from children with 

epileptic spasms and normal controls, to 

obtain phase-amplitude coupling measures. 

METHODS

j

DISCUSSION & CONCLUSIONS

▪ Total of 600 19-channel EEG samples recorded 

from both children with and without infantile 

spasms (cases and controls, respectively) were 

processed. These datasets were imported into 

EEGLAB14 [1] running under Matlab 2017b.

▪ The three PAC measures were obtained as 

follows: (1) After applying FIR high-pass filter at 

0.5 Hz and CleanLine() for removing line noise, 

the first PAC measure (Canolty’s modulation 

index, MI [2]) was calculated (phase 3-4 Hz, 

amplitude 35-70 Hz). (2) clean_rawdata() [3] 

was applied that included artifact subspace 

reconstruction (ASR), which is a solution for 

denoising for multivariate data using sliding-

window PCA. Informax ICA [4] was performed 

to obtain independent components (ICs), which 

were evaluated with ICLabel() [5] to generate 

probabilistic labels.

▪ To evaluate the optimal level of data denoising, 

we prepared the three levels of cleaning: Raw, 

Level 1, and Level 2.

➢ For the Level 1 cleaning, IC exclusion criteria 

were label probability > 0.8 for either Eye, 

Muscle, or Heart. After rejecting those ICs, 

the remaining ICs were backprojected to 

scalp electrodes for the second PAC 

calculation.

➢ For the Level 2 cleaning, IC rejection was 

redone by selecting the class-label ‘Brain’, 

then the third PAC measure was calculated.

▪ As a validation procedure, we evaluated the 

number of ICs rejected and how well gamma-

delta modulation indices (MI) could distinguish 

cases from controls using PACT [6].

RESULTS
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Minus Raw(A) 12,200 independent components (ICs) obtained from 600 subjects 

were labeled by ICLabel [5]. All the data were cleaned with artifact 

subspace reconstruction (ASR) [3]. For the level-1 cleaning, artifact ICs 

(highlighted in green) were rejected. For the level-2 cleaning, only brain 

ICs (highlighted in red) were included. For the brain-, muscle-, and eye-

class ICs, corresponding dipole density plots are shown. (B) ASR removed 

average 5.6% of data points in addition to subspace reconstruction. (C)

Level-1 cleaning rejected average 5.5/21 ICs. (D) Level-2 cleaning rejected 

average 11.1/21 ICs. (E) Effects of ASR and IC rejections compared with 

Raw data. For all scalp electrodes, EEG power differences were calculated 

for conventional EEG frequency bands. Note the opposite direction of the 

cleaning effects in the lower frequencies and higher frequencies. (F) 

Canolty’s modulation index (MI) [2] calculated for different cleaning 

approaches. Note the color scales are different. (G) The effect of data 

cleaning. Both Level 1- and 2-cleaned data showed clearer differences 

between the control and clinical group.
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We demonstrated that the fully automated preprocessing pipeline for the scalp-recorded EEG data can reveal clearer group difference between control group and the 

patients. Scalp electrode analysis revealed that both ASR and IC rejection globally lowers EEG power for the lower frequency ranges, but opposite effect was observed 

in the gamma range. Interestingly, the Level1 cleaning results showed larger gamma-power increase than that of Level2 cleaning, indicating inverse U-shape effect. The 

result was somewhat unexpected and warrants further investigation, as gamma-band power is directly related to calculation of modulation index.
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